Yangtian Zhang<sup>1,†</sup> Sizhuang He<sup>1,†</sup> Lawrence Zhao<sup>1</sup> David Zhang<sup>1</sup> Syed Asad Rizvi<sup>1</sup> Shiyang Zhang<sup>1</sup>

David van Dijk<sup>1</sup> Rex Ying<sup>1</sup>

Emanuele Zappala<sup>2</sup>

Yale

 $^1$  Yale University;  $^2$  Idaho State University †Equal contribution

### Introduction

Discrete diffusion models offer flexible and controllable generation for structured sequences but typically rely on the Markov assumption, conditioning each step only on the current state. We propose CaDDi, a causal discrete diffusion model that conditions on the entire generative trajectory, unifying sequential and temporal modeling within a non-Markovian framework.

#### Contributions

- Introduced a non-Markovian discrete diffusion framework where each denoising step incorporates the full generative trajectory, improving inference robustness.
- Proposed CaDDi, a causal discrete diffusion model that unifies sequential and temporal modeling within a non-Markovian diffusion framework. Its further variation CaDDi-AR generalizes traditional causal language models as a special case and can seamlessly adopt pretrained LLMs for discrete diffusion, enabling more controllable and structured generation.
- Quantitative results show that CaDDi outperforms recent discrete diffusion models, achieving lower generative perplexity on language datasets and stronger reasoning capabilities when leveraging a pretrained LLM.

# Non-Markovian Discrete Diffusion

Goal: Relax the Markov assumption in discrete diffusion by introducing causal dependencies across timesteps.

#### 1. Background: Discrete Diffusion

Standard discrete diffusion models such as **D3PM** define a Markovian noising process:

$$q(x_t|x_{t-1}) = Q_t(x_t|x_{t-1}),$$

where  $Q_t$  is a pre-defined transition matrix. The reverse model  $p_{\theta}(x_{t-1}|x_t)$  learns to denoise one step at a time.

Both the forward and reverse processes are modeled as Markov Chains.

### 2. Non-Markovian Forward Process

Instead of a Markovian forward process  $q(x_t|x_{t-1})$ , CaDDi defines

$$q(\mathbf{x}_{0:T}) := q(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_T) = q(\mathbf{x}_0) \prod_{t=1}^T q(\mathbf{x}_t | \mathbf{x}_{0:t-1}) = q(\mathbf{x}_0) \prod_{t=1}^T q(\mathbf{x}_t | \mathbf{x}_0),$$

where independent noise is injected into the original data  $x_0$  at each timestep t.

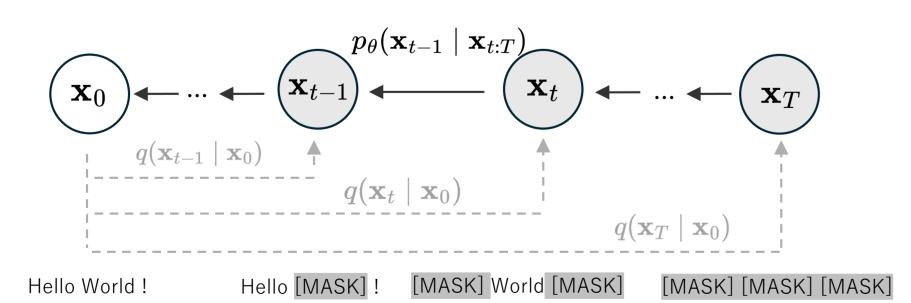


Figure 1. Ilustration of Non-Markovian discrete diffusion.

#### 3. Non-Markovian Reverse Process

The posterior of the non-Markovian discrete diffusion model is of the form:

$$p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_{t:T}) := q(\mathbf{x}_{t-1} \mid \mathbf{x}_{t:T}, \mathbf{x}_0 = \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t:T}, t)) = q(\mathbf{x}_{t-1} \mid \mathbf{x}_0 = \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t:T}, t))$$

# 4. Autoregressive inference

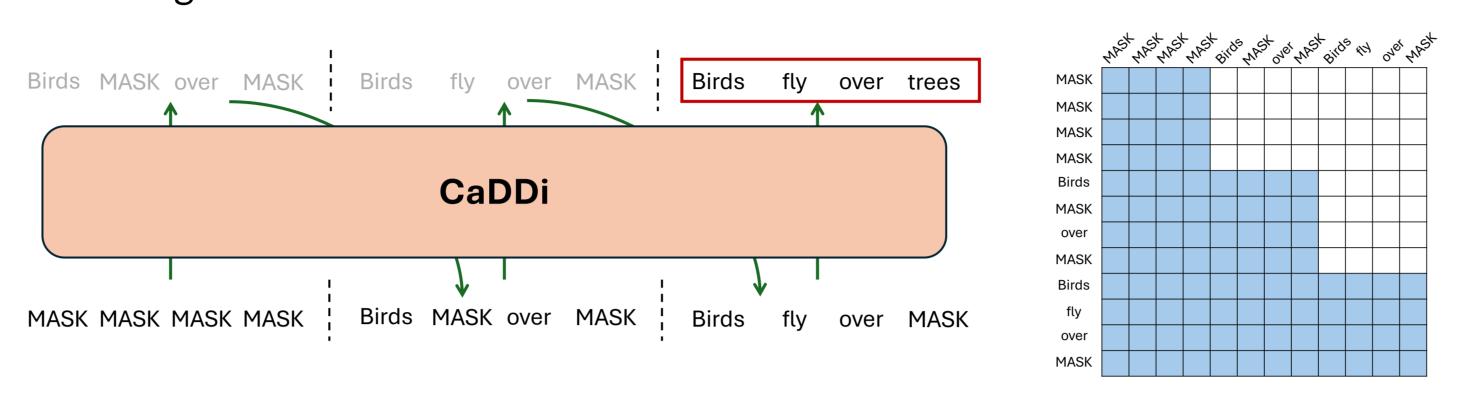


Figure 2. Autoregressive inference of non-Markovian Discrete Diffuion and the corresponding block-level attention mask

#### 5. Evidence Lower Bound (ELBO)

We optimize:

$$\mathcal{L}_{\text{non-markov}} = \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \, \log p_{\theta}(\mathbf{x}_0 \mid \mathbf{x}_{1:T}) - \text{KL}\Big(q(\mathbf{x}_T \mid \mathbf{x}_0) \| p_{\theta}(\mathbf{x}_T) \Big) - \mathcal{L}_T$$
where 
$$\mathcal{L}_T = \sum_{t=2}^T \mathbb{E}_{q(\mathbf{x}_{t:T}|\mathbf{x}_0)} \, \text{KL}(q(\mathbf{x}_{t-1} \mid \mathbf{x}_0) \| p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_{t:T})).$$

# CaDDi: Causal Discrete Diffusion Model

**Key idea:** CaDDi unifies the **sequential** (token order) and **temporal** (diffusion timesteps) dimensions within a single causal Transformer.

### 1. Unified Sequential-Temporal Modeling

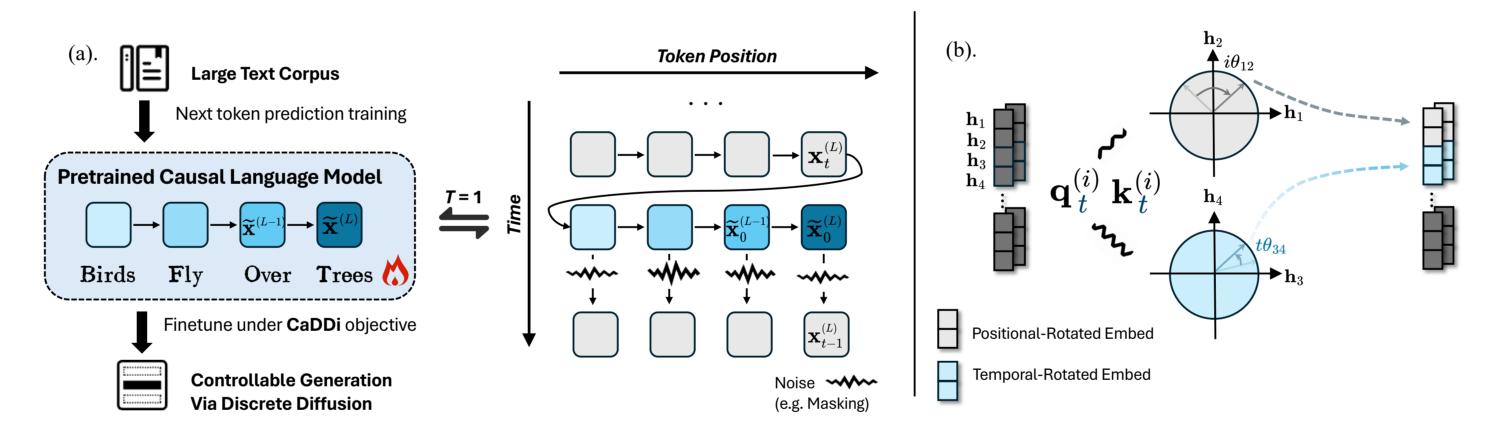


Figure 3. (a): Unified sequential-temporal modeling of CaDDi. A traditional autoregressive LM is a special case of CaDDi-AR with T=1. (b): **2D rotary positional encoding** 

#### 2. 2D Rotary Positional Encoding

To capture both token and timestep dependencies, we extend 1D rotary embeddings (RoPE) to a 2D variant:

$$\mathbf{R}_t^{(i)} = egin{bmatrix} \mathbf{R}_{\mathsf{seq}}^{(i)} & 0 \ 0 & \mathbf{R}_{\mathsf{time}}^{(t)} \end{bmatrix},$$

#### 3. CaDDi-AR: Autoregression over Tokens

To better approximate the true posterior, we further factorize:

$$p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t:T}\right) = \prod_{i=0}^{L} p_{\theta}\left(\mathbf{x}_{t-1}^{i} \mid \mathbf{x}_{t-1}^{0:i-1}, \mathbf{x}_{t:T}\right)$$

enabling token-level autoregressive denoising consistent with decoder-only LMs.

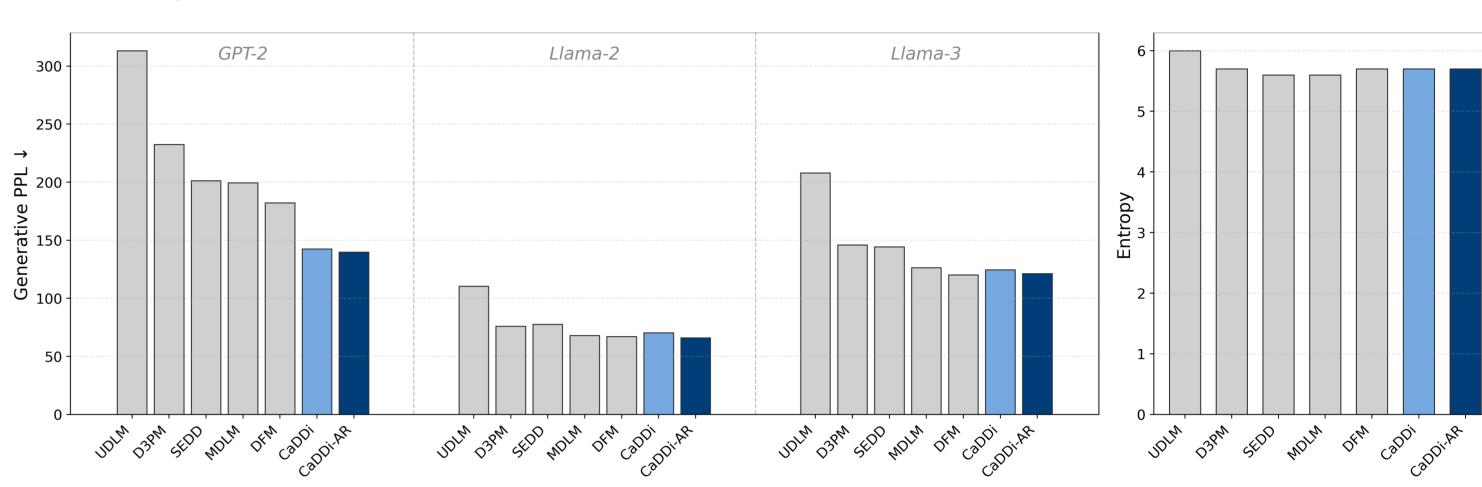
#### 4. Semi-Speculative Decoding

CaDDi-AR reuses the previous timestep's prediction  $\tilde{\mathbf{x}}_0^{\text{prev}}$  as a draft for the next step and verifies all tokens in parallel. This reduces  $\mathcal{O}(L \times T)$  evaluations to nearly linear in L while preserving generation quality.

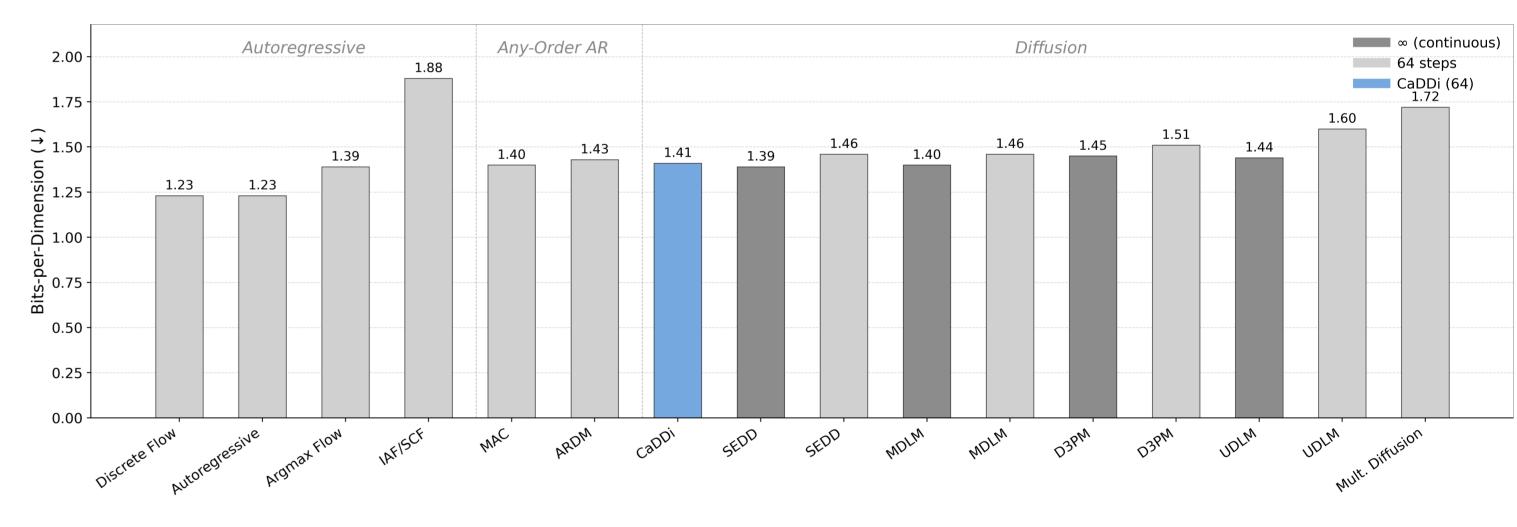
## **Experiments**

All models use 12-layer Transformers trained with identical hyperparameters.

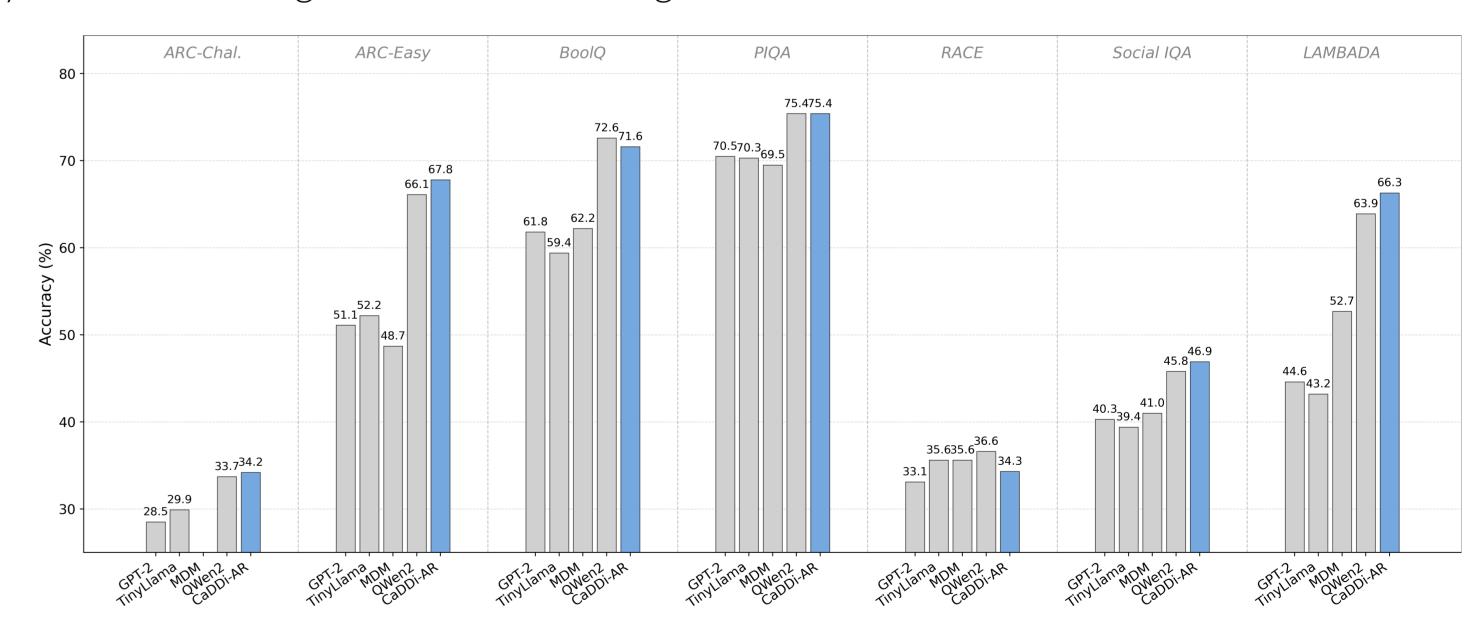
1. One Billion Words (LM1B). CaDDi achieves the lowest generative perplexity while preserving output diversity.



2. Text8 Benchmark. CaDDi achieves the best bits-per-dimension (BPD) among discrete diffusion models.



3. Reasoning with Fine-tuned LLMs. Fine-tuning CaDDi-AR on a 1.5B QWen model yields consistent gains across reasoning datasets.



4. Conditional Text Generation on Amazon Polarity dataset.

CaDDi-CFG achieves sentiment accuracy comparable to fine-tuned GPT-2 while supporting flexible infilling from arbitrary positions.

