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Introduction

We introduce CaLMFlow (Causal Language Models for Flow Matching), a novel

framework that casts flowmatching as a Volterra integral equation (VIE), leveraging

the power of Causal Language Models (CLMs) for continuous data generation.

Theoretical Background

FlowMatching
Flow matching is a simulation-free framework that models data flows φ(x, t) with
an ordinary differential equation (ODE).

dφ

dt
= v(φ, t), φ(x, 0) = x, (1)

Limitations of ODE-based methods
Many ODE systems suffer from stiffness.
This usually happens in systems with rapid changes or long-range dependencies.

Such systems are numerically unstable and computationally expensive to solve.

Volterra Integral Equations

Volterra Integral Equations (VIEs) generalize ODEs, avoiding stiffness.

We can reformulate the flow matching problem using VIEs

z(t) = f (z(t), t) +
∫ t

0
G(z(s), t, s)ds (2)

Solving VIEs with Causal Language Models

We derive a discretized VIE through discretization of the time domain:

ẑi+1 = f (zi, ti+1) +
i∑

j=0
∆ti+1G(zj, ti+1, tj), (3)

CLMs act as an iterative integral equation solver of the discretized VIE.

Training CLMs is also simulation-free

Key Contributions

We formulate flow matching as VIEs that are solved by CLMs, enhancing

stability and generation quality of ODE-based flow matching.

Our framework natively enable controllable generation of flows using

natural language prompts.

We developed continuous space tokens via variational decoding, extending

language modeling techniques to continuous domains.

We implemented integration over different domains via spatiotemporal and

trajectory tokenization.

CaLMFlow can model high dimensional distributions where
ODE-based methods fail

Gaussian → 2 Gaussians Gaussian → 8 Gaussians Gaussian → 2 Moons

Data Dimension = 100

CFM 5.483 ± 0.569 4.846 ± 0.054 5.061 ± 0.103
CFM-OT 5.494 ± 0.517 4.795 ± 0.031 5.013 ± 0.058
CFM-SB 5.504 ± 0.446 4.914 ± 0.038 5.294 ± 0.042

CaLMFlow 3.137±1.028 2.317±0.226 2.944±0.195

Data Dimension = 1000

CFM 25.064 ± 1.291 23.294 ± 0.166 23.428 ± 0.187
CFM-OT 25.131 ± 1.209 23.116 ± 0.118 23.339 ± 0.133
CFM-SB 25.053 ± 1.558 23.211 ± 0.078 23.805 ± 0.132

CaLMFlow 11.027±3.853 8.272±0.272 13.423±0.258

Table 1. 2-Wasserstein distance comparison (lower values are better) of CaLMFlow and CFM

variants across different distribution pairs and dimensions. As the dimensionality increases,

CaLMFlow consistently outperforms CFM variants, particularly in high-dimensional settings

where we expect traditional ODE-based methods, such as CFM, struggle.

CaLMFlow Framework

Figure 1. Overview of the

CaLMFlow framework.

CaLMFlow takes as input

textual conditions and flows

and generates the next time

point for the flows. The

textual condition is tokenized

and embedded using the LLM

tokenizer and embedding

layer, while the conditional

flows are transformed into

spatial-temporal tokens using

a learned projection. If

multiple conditional flows are

input simultaneously, the

tokens are ordered by flow,

space, and then time. The

LLM applies causal language

modeling and generates the

next time point for each flow.

CaLMFlow accurately generates complex realworld
single-cell data distributions

Method ↓ Metric → MMD(↓) 2-Wasserstein(↓) Leiden KLD(↓) adMMD(↓)

CFM 0.0763 ± 0.0275 0.0158 ± 0.0043 0.0330 ± 0.0027e-2 9.3568e-4 ± 0.7058e-4

CFM-OT 0.0893 ± 0.0193 0.0149 ± 0.0012 0.0324 ± 0.0039e-2 9.1720e-4 ± 0.4719e-4

CFM-SB 0.0998 ± 0.0050 0.0151 ± 0.0024 0.0338 ± 0.0045e-2 9.5234e-4 ± 0.3037e-4

DDPM 0.0709 ± 0.0010 0.0348 ± 0.0068 0.0364 ± 0.0101e-2 3.8040e-4 ± 0.1516e-4

scVI 0.1326 ± 0.0230 0.0349 ± 0.0020 0.0360 ± 0.0096e-2 11.1673e-4 ± 0.4967e-4

scGPT 0.3118 ± 0.0063 0.4716 ± 0.0741 — 18.1949e-4 ± 0.0531e-4

CaLMFlow (1 traj.) 0.0060 ± 0.0002 0.0100 ± 0.0006 0.0311 ± 0.0045e-2 2.4795e-4 ± 0.0460e-4

CaLMFlow (5 traj.) 0.0031 ± 0.0001 0.0087 ± 0.0006 0.0331 ± 0.0158e-2 1.8039e-4 ± 0.0239e-4

Table 2. Distributional metrics between model generated data and ground truth data. Our default

CaLMFlow outperforms all methods across all metrics, demonstrating CaLMFlow’s ability to

model the data distribution. Further improvement is seen with CaLMFlow (5 traj.), showing the

benefit of multi-trajectory tokenization.

CaLMFlow accurately performs conditional single cell
generation using natural language prompts

(a) CaLMFlow (R.I.) (b) CaLMFlow (N.L.) (c) CFM (d) CFM-OT

(e) CFM-SB (f) scVI (g) scGPT (h) CPA

Figure 2. Comparison of conditional generation quality across different models for single-cell

perturbation data. CaLMFlow exhibits strong overlap between generated data distribution (blue)

and the ground-truth distribution (orange), highlighting its superior capability to model data with

unseen combinatorial perturbations. For CaLMFlow, R.I. refers to randomly initialized CLM, and

N.L. refers to natural language pretrained CLM.

CaLMFlow is able to generalize to unseen single cell
combinatorial perturbation conditions

(a) Ground Truth (b) CaLMFlow (R.I.) (c) CaLMFlow (N.L.) (d) CFM

(e) CFM-OT (f) CFM-SB (g) scVI (h) scGPT (i) CPA

Figure 3. Comparison of conditional generation quality across different models for single-cell

perturbation data. CaLMFlow generates data that accurately reflects the ground truth

distribution across all combinatorial labels (cell type, perturbation, and chronicity),

demonstrating its superior ability to understand complex conditions while maintaining a realistic

overall data distribution. For CaLMFlow, R.I. refers to randomly initialized CLM, and N.L. refers to

natural language pretrained CLM.

CaLMFlow allows concurrent generation of multiple
trajectories improving sample quality

(a) Ground Truth (b) CFM (c) CaLMFlow (1 traj.) (d) CaLMFlow (8 traj.)

Figure 4. Heatmaps of the ground truth 4 Gaussians dataset and that generated by CFM and

CaLMFlow. CaLMFlow generate distributions closely matching the ground truth, with the 8-traj

version distributing the data further evenly and accurately.
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